Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet ; 402(10399): 397-410, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37393920

RESUMO

BACKGROUND: A genetically engineered pig cardiac xenotransplantation was done on Jan 7, 2022, in a non-ambulatory male patient, aged 57 years, with end-stage heart failure, and on veno-arterial extracorporeal membrane oxygenation support, who was ineligible for an allograft. This report details our current understanding of factors important to the xenotransplantation outcome. METHODS: Physiological and biochemical parameters critical for the care of all heart transplant recipients were collected in extensive clinical monitoring in an intensive care unit. To ascertain the cause of xenograft dysfunction, we did extensive immunological and histopathological studies, including electron microscopy and quantification of porcine cytomegalovirus or porcine roseolovirus (PCMV/PRV) in the xenograft, recipient cells, and tissue by DNA PCR and RNA transcription. We performed intravenous immunoglobulin (IVIG) binding to donor cells and single-cell RNA sequencing of peripheral blood mononuclear cells. FINDINGS: After successful xenotransplantation, the graft functioned well on echocardiography and sustained cardiovascular and other organ systems functions until postoperative day 47 when diastolic heart failure occurred. At postoperative day 50, the endomyocardial biopsy revealed damaged capillaries with interstitial oedema, red cell extravasation, rare thrombotic microangiopathy, and complement deposition. Increased anti-pig xenoantibodies, mainly IgG, were detected after IVIG administration for hypogammaglobulinaemia and during the first plasma exchange. Endomyocardial biopsy on postoperative day 56 showed fibrotic changes consistent with progressive myocardial stiffness. Microbial cell-free DNA testing indicated increasing titres of PCMV/PRV cell-free DNA. Post-mortem single-cell RNA sequencing showed overlapping causes. INTERPRETATION: Hyperacute rejection was avoided. We identified potential mediators of the observed endothelial injury. First, widespread endothelial injury indicates antibody-mediated rejection. Second, IVIG bound strongly to donor endothelium, possibly causing immune activation. Finally, reactivation and replication of latent PCMV/PRV in the xenograft possibly initiated a damaging inflammatory response. The findings point to specific measures to improve xenotransplant outcomes in the future. FUNDING: The University of Maryland School of Medicine, and the University of Maryland Medical Center.


Assuntos
Ensaios de Uso Compassivo , Leucócitos Mononucleares , Humanos , Masculino , Transplante Heterólogo , Imunoglobulinas Intravenosas , Coração , Rejeição de Enxerto/prevenção & controle
2.
Transplantation ; 107(8): 1718-1728, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706064

RESUMO

Cardiac xenotransplantation from swine has been proposed to "bridge the gap" in supply for heart failure patients requiring transplantation. Recent preclinical success using genetically modified pig donors in baboon recipients has demonstrated survival greater than 6 mo, with a modern understanding of xenotransplantation immunobiology and continued experience with large animal models of cardiac xenotransplantation. As a direct result of this expertise, the Food and Drug Administration approved the first in-human transplantation of a genetically engineered cardiac xenograft through an expanded access application for a single patient. This clinical case demonstrated the feasibility of xenotransplantation. Although this human study demonstrated proof-of-principle application of cardiac xenotransplantation, further regulatory oversight by the Food and Drug Administration may be required with preclinical trials in large animal models of xenotransplantation with long-term survival before approval of a more formalized clinical trial. Here we detail our surgical approach to pig-to-primate large animal models of orthotopic cardiac xenotransplantation, and the postoperative care of the primate recipient, both in the immediate postoperative period and in the months thereafter. We also detail xenograft surveillance methods and common issues that arise in the postoperative period specific to this model and ways to overcome them. These studies require multidisciplinary teams and expertise in orthotopic transplantation (cardiac surgery, anesthesia, and cardiopulmonary bypass), immunology, genetic engineering, and experience in handling large animal donors and recipients, which are described here. This article serves to reduce the barriers to entry into a field with ever-growing enthusiasm, but demands expertise knowledge and experience to be successful.


Assuntos
Transplante de Coração , Humanos , Animais , Suínos , Transplante Heterólogo/métodos , Transplante de Coração/efeitos adversos , Transplante de Coração/métodos , Primatas , Xenoenxertos , Coração , Animais Geneticamente Modificados , Rejeição de Enxerto/prevenção & controle
3.
Xenotransplantation ; 29(3): e12744, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357044

RESUMO

We report orthotopic (life-supporting) survival of genetically engineered porcine cardiac xenografts (with six gene modifications) for almost 9 months in baboon recipients. This work builds on our previously reported heterotopic cardiac xenograft (three gene modifications) survival up to 945 days with an anti-CD40 monoclonal antibody-based immunosuppression. In this current study, life-supporting xenografts containing multiple human complement regulatory, thromboregulatory, and anti-inflammatory proteins, in addition to growth hormone receptor knockout (KO) and carbohydrate antigen KOs, were transplanted in the baboons. Selective "multi-gene" xenografts demonstrate survival greater than 8 months without the requirement of adjunctive medications and without evidence of abnormal xenograft thickness or rejection. These data demonstrate that selective "multi-gene" modifications improve cardiac xenograft survival significantly and may be foundational for paving the way to bridge transplantation in humans.


Assuntos
Rejeição de Enxerto , Transplante de Coração , Animais , Animais Geneticamente Modificados , Sobrevivência de Enxerto , Xenoenxertos , Humanos , Imunossupressores , Papio , Suínos , Transplante Heterólogo
4.
Front Immunol ; 12: 667093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177906

RESUMO

Background: Perioperative cardiac xenograft dysfunction (PCXD) describes a rapidly developing loss of cardiac function after xenotransplantation. PCXD occurs despite genetic modifications to increase compatibility of the heart. We report on the incidence of PCXD using static preservation in ice slush following crystalloid or blood-based cardioplegia versus continuous cold perfusion with XVIVO© heart solution (XHS) based cardioplegia. Methods: Baboons were weight matched to genetically engineered swine heart donors. Cardioplegia volume was 30 cc/kg by donor weight, with del Nido cardioplegia and the addition of 25% by volume of donor whole blood. Continuous perfusion was performed using an XVIVO © Perfusion system with XHS to which baboon RBCs were added. Results: PCXD was observed in 5/8 that were preserved with crystalloid cardioplegia followed by traditional cold, static storage on ice. By comparison, when blood cardioplegia was used followed by cold, static storage, PCXD occurred in 1/3 hearts and only in 1/5 hearts that were induced with XHS blood cardioplegia followed by continuous perfusion. Survival averaged 17 hours in those with traditional preservation and storage, followed by 11.47 days and 15.03 days using blood cardioplegia and XHS+continuous preservation, respectively. Traditional preservation resulted in more inotropic support and higher average peak serum lactate 14.3±1.7 mmol/L compared to blood cardioplegia 3.6±3.0 mmol/L and continuous perfusion 3.5±1.5 mmol/L. Conclusion: Blood cardioplegia induction, alone or followed by XHS perfusion storage, reduced the incidence of PCXD and improved graft function and survival, relative to traditional crystalloid cardioplegia-slush storage alone.


Assuntos
Transplante de Coração , Animais , Parada Cardíaca Induzida/métodos , Xenoenxertos , Papio , Perfusão , Suínos , Transplante Heterólogo
5.
Sci Rep ; 10(1): 10709, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612124

RESUMO

Heterotopic cardiac transplantation in the intra-abdominal position in a large animal model has been essential in the progression of the field of cardiac transplantation. Our group has over 10 years of experience in cardiac xenotransplantation with pig to baboon models, the longest xenograft of which survived over 900 days, with rejection only after reducing immunosuppression. This article aims to clarify our approach to this model in order to allow others to share success in long-term survival. Here, we demonstrate the approach to implantation of a cardiac graft into the intra-abdominal position in a baboon recipient for the study of transplantation and briefly highlight our model's ability to provide insight into not only xenotransplantation but across disciplines. We include details that have provided us with consistent success in this model; performance of the anastomoses, de-airing of the graft, implantation of a long-term telemetry device for invasive graft monitoring, and ideal geometric positioning of the heart and telemetry device in the limited space of the recipient abdomen. We additionally detail surveillance techniques to assess long-term graft function.


Assuntos
Sobrevivência de Enxerto/fisiologia , Transplante de Coração/métodos , Transplante Heterólogo/métodos , Transplante Heterotópico/métodos , Abdome/cirurgia , Animais , Feminino , Rejeição de Enxerto/prevenção & controle , Imunossupressores/uso terapêutico , Masculino , Modelos Animais , Papio , Suínos , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...